

DPP No. 13

Total Marks: 45

Max. Time : 45 min.

🚓 www.studentbro.in

Topics : Fundamentals of Mathematics, Sequence & Series, Trigonometric Ratio, Matrices & Determinants, Binomial Theorem, Straight Line, Permutation & Combination, Complex Number, Circle, Ellipse, Set & Relation

Type of QuestionsM.M., Min.Single choice Objective (no negative marking) Q.1 to Q.13(3 marks, 3 min.)[39, 39]Assertion and Reason (no negative marking) Q.14, 15(3 marks, 3 min.)[6, 6]

1.The equation $e^{\sin x} - e^{-\sin x} - 4 = 0$ has :(A) infinite number of real roots(B)(C) exactly one real root(C)

(B) no real roots(D) exactly four real roots

2. Let $A = \begin{pmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 3 & 2 & 1 \end{pmatrix}$. If u_1 and u_2 are column matrices such that $Au_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$ and $Au_2 = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$, then $u_1 + u_2$ is

equal to:

 $(A) \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix} \qquad (B) \begin{pmatrix} -1 \\ 1 \\ -1 \end{pmatrix} \qquad (C) \begin{pmatrix} -1 \\ -1 \\ 0 \end{pmatrix} \qquad (D) \begin{pmatrix} 1 \\ -1 \\ -1 \\ -1 \end{pmatrix}$

If n is a positive integer, then (√3 + 1)²ⁿ - (√3 - 1)²ⁿ is :

 (A) an irrational number
 (B) an odd positive integer
 (C) an even positive integer
 (D) a rational number other than positive integers

 If 100 times the 100th term of an AP with non zero common difference equals the 50 times its 50th term, then

the 150^{th} term of this AP is :	
(A) – 150	(B) 150 times its 50 th term
(C) 150	(D) zero

5. In a $\triangle PQR$, if 3 sin P + 4 cos Q = 6 and 4 sin Q + 3 cos P = 1, then the angle R is equal to :

(A)
$$\frac{5\pi}{6}$$
 (B) $\frac{\pi}{6}$ (C) $\frac{\pi}{4}$ (D) $\frac{3\pi}{4}$

6. If the line 2x + y = k passes through the point which divides the line segment joining the points (1, 1) and (2, 4) in the ratio 3 : 2, then k equals :

(A)
$$\frac{29}{5}$$
 (B) 5 (C) 6 (D) $\frac{11}{5}$

Assuming the balls to be identical except for difference in colours, the number of ways in which one or more balls can be selected from 10 white, 9 green and 7 black balls is :

 (A) 880
 (B) 629
 (C) 630
 (D) 879

CLICK HERE

8. If $z \neq 1$ and $\frac{z^2}{z-1}$ is real, then the point represented by the complex number z lies :

(A) either on the real axis or on a circle passing through the origin.

- (B) on a circle with centre at the origin.
- (C) either on the real axis or on a circle not passing through the origin.
- (D) on the imaginary axis.
- 9. Let P and Q be 3×3 matrices $P \neq Q$. If $P^3 = Q^3$ and $P^2Q = Q^2P$, then determinant of $(P^2 + Q^2)$ is equal to : (A) -2 (B) 1 (C) 0 (D) -1
- **10.** The length of the diameter of the circle which touches the x-axis at the point (1, 0) and passes through the point (2, 3) is :

(A)
$$\frac{10}{3}$$
 (B) $\frac{3}{5}$ (C) $\frac{6}{5}$ (D) $\frac{5}{3}$

- **11.** Let X = {1, 2, 3, 4, 5}. The number of different ordered pairs (Y, Z) that can formed such that $Y \subseteq X, Z \subseteq X$ and $Y \cap Z$ is empty, is : (A) 5^2 (B) 3^5 (C) 2^5 (D) 5^3
- 12. An ellipse is drawn by taking a diameter of the circle (x 1)² + y² = 1 as its semi-minor axis and a diameter of the circle x² + (y 2)² = 4 is semi-major axis. If the centre of the ellipse is at the origin and its axes are the coordinate axes, then the equation of the ellipse is :

 (A) 4x² + y² = 4
 (B) x² + 4y² = 8
 (C) 4x² + y² = 8
 (D) x² + 4y² = 16
- **13.** A line is drawn through the point (1, 2) to meet the coordinate axes at P and Q such that it forms a triangle OPQ, where O is the origin. if the area of the triangle OPQ is least, then the slope of the line PQ is :

(A)
$$-\frac{1}{4}$$
 (B) -4 (C) -2 (D) $-\frac{1}{2}$

14. Statement-1: The sum of the series 1 + (1 + 2 + 4) + (4 + 6 + 9) + (9 + 12 + 16) + + (361 + 380 + 400) is 8000.

Statement-2 : $\sum_{k=1}^{n} (k^3 - (k-1)^3) = n^3$, for any natural number n.

- (A) Statement-1 is false, Statement-2 is true.
- (B) Statement-1 is true, statement-2 is true; statement-2 is a correct explanation for Statement-1.
- (C) Statement-1 is true, statement-2 is true; statement-2 is not a correct explanation for Statement-1.
- (D) Statement-1 is true, statement-2 is false.
- **15.** Statement-1 : An equation of a common tangent to the parabola $y^2 = 16\sqrt{3} x$ and the ellipse $2x^2 + y^2 = 4$

is $y = 2x + 2\sqrt{3}$.

Statement-2: If the line $y = mx + \frac{4\sqrt{3}}{m}$, $(m \neq 0)$ is a common tangent to the parabola $y^2 = 16\sqrt{3} x$ and the

ellipse $2x^2 + y^2 = 4$, then m satisfies $m^4 + 2m^2 = 24$.

- (A) Statement-1 is false, Statement-2 is true.
- (B) Statement-1 is true, statement-2 is true; statement-2 is a correct explanation for Statement-1.
- (C) Statement-1 is true, statement-2 is true; statement-2 is not a correct explanation for Statement-1.

CLICK HERE

🚓 www.studentbro.in

(D) Statement-1 is true, statement-2 is false.

Get More Learning Materials Here : 📕

Answers Key

1.	(B)	2.	(D)	3.	(A)	4.	(D)
5.	(B)	6.	(C)	7.	(D)	8.	(A)
9.	(C)	10.	(A)	11.	(B)	12.	(D)
13.	(C)	14.	(B)	15.	(B)		

Get More Learning Materials Here : 📕

